原创 金属硫蛋白缺乏可加重链脲佐菌素诱导的糖尿病小鼠的糖尿病肾病
2024年03月21日 【健康号】 微医药     阅读 274

金属硫蛋白缺乏可加重链脲佐菌素诱导的糖尿病小鼠的糖尿病肾病

氧化应激和炎症在糖尿病并发症,包括糖尿病肾病中起重要作用。金属硫蛋白(MT)在糖尿病肾近端小管上皮细胞中作为抗氧化剂被诱导;然而,MT在肾功能中的作用尚不清楚。因此,我们研究MT缺乏是否通过氧化应激和炎症加速糖尿病肾病。注射链脲佐菌素诱导MT-t缺失小鼠(MT X/X)MT-t/MT-t小鼠发生糖尿病。测量尿白蛋白排泄、组织学变化、活性氧(ROS)标志物和肾脏炎症。小鼠近端小管上皮细胞(mProx24)被用来进一步阐明MT在高糖条件下的作用。与糖尿病MT相比,糖尿病MT X/X小鼠的糖尿病肾病参数、ROS和炎症标志物加速,尽管血糖水平相当。MT缺乏加速了糖尿病肾间质纤维化和巨噬细胞向间质浸润。电镜显示糖尿病MTX/X小鼠近端小管上皮细胞线粒体形态异常。体外研究表明,在高糖条件下培养的mProx24细胞中,小干扰RNA敲低MT可增强线粒体ROS的产生和炎症相关基因的表达。本研究结果表明,MT可能在糖尿病肾病中保护肾脏免受高糖诱导的ROS和随后的炎症作用中发挥关键作用。糖尿病肾病;炎症;金属硫蛋白;氧化应激;糖尿病肾病是终末期肾脏疾病的主要原因,也是心血管疾病的独立危险因素(10,25)。糖尿病肾病的发生和发展有多种机制,包括遗传和血流动力学因素、氧化应激、大量研究表明,高血糖与活性氧(ROS)的生成增强有关,氧化应激与糖尿病肾病的发生有关(6,7)。新出现的证据也表明,炎症途径在糖尿病肾病的发病机制中起着至关重要的作用(20,26)。因此,氧化应激和炎症的调节可能是糖尿病肾病的主要治疗靶点。金属硫蛋白(MT)是一种细胞内金属结合蛋白,其特点是低分子质量(6-7kda),高半胱氨酸含量(61-62个氨基酸中的20),没有芳香或组氨酸残基(30)。虽然已经鉴定了四种同种异构体,但MT-1-2(MT-1/-2)作为主要同种异构体广泛分布于全身(30)MT在重金属解毒和必需金属稳态中起重要作用(24)。此外,MT具有强大的抗氧化功能,是一种保护细胞和组织免受氧化应激的适应性蛋白(2,9)。先前的研究报道了MT对帕金森病小鼠模型的神经保护作用(5,17,18)。我们最近证实MT主要在肾近端小管上皮细胞中表达,高糖诱导的氧化应激可增强糖尿病肾脏中MT的表达(21)。这些结果表明,MT通过代偿上调来保护肾脏免受糖尿病引起的氧化应激的影响;然而,MT在糖尿病肾病发病机制中的作用仍然知之甚少。因此,本研究旨在研究MT在糖尿病条件下保护肾脏免受高糖诱导的氧化应激的作用,使用MT缺乏(MT X/X)MT/X小鼠。我们还使用正常或高糖条件下培养的小鼠近端小管上皮(mProx24)细胞来确定小干扰RNA(siRNA)敲低MT是否会诱导线粒体ROS,从而导致炎症。

 

材料和方法

 

实验性的协议。雄性纯合子MT-1/2敲除小鼠(MT实验性的协议。雄性纯合子MT-1/2敲除小鼠(MT X/X)来自Jackson Laboratory(Bar Harbor,ME)MT X/X小鼠在129/Sv遗传背景下饲养,因此129/ Sv小鼠被用作野生型对照(MT/Sv)。所有程序均按照冈山大学医学院动物实验指南、日本政府动物保护和管理法(105)和日本政府动物饲养和安全通报(6)进行。8周大的小鼠分为四组:1)非糖尿病 MT/MT小鼠(ND-WT;N (7);2)链脲佐菌素(STZ)诱导的糖尿病MT (DM-WT);N (7);3)非糖尿病MTX/X小鼠(ND-KO;N (7);4)糖尿病MTX/X小鼠(DM-KO;n<e:1>7).糖尿病被诱导并证实如先前报道(15)。所有的老鼠都可以免费获得标准的饮食和自来水。小鼠在诱导糖尿病后12周被安乐死。取下肾脏,称重,用10%福尔马林固定,进行周期性酸-甲基苯丙胺银(PAM)和马松三色染色。剩余组织的部分被嵌入最佳切割温度化合物(Sakura Finetechnical,东京,日本),并立即在丙酮中冷冻,在干冰上冷却。其他组织在液氮中快速冷冻,并在X80°C下保存。为探讨STZ对糖尿病肾病的影响,将8周龄MT X/X小鼠分为3:1)非糖尿病小鼠(ND-K0;N (5);2) stz诱导糖尿病小鼠(DM-K0;N (5);3)甘精胰岛素治疗stz诱导的糖尿病小鼠(DM-KO2glargine;n5).使用甘精胰岛素(Sanofi, Tokyo,Japan)5:0。腹腔注射8u/体。小鼠在诱导糖尿病后12周被安乐死。取出肾脏,用10%福尔马林固定,进行PAM染色。代谢数据。12周时测量体重、肾脏重量、糖化血红蛋白、血清肌酐和24小时尿白蛋白排泄(UAE)。糖化血红蛋白用高压液相色谱法测定,血清肌酐用酶法测定。收集尿液24h,将每只小鼠单独置于代谢笼中,随意提供食物和水。阿联酋的测量方法如前所述(22)。光学显微镜。切片经PAM和马松三色染色分析。在糖尿病诱导后12周,通过高倍镜检查每只动物皮质中随机选择的10个肾小球(x400)来估计肾小球的大小。使用Lumina Vision软件(Mitani, Tokyo, Japan)测量肾小球簇和间质纤维化的面积。系膜基质指数(mesangial matrix index, MMI)定义为簇毛面积中pam阳性面积,计算公式为:MMI<e:1>(pam阳性面积)/(簇毛面积)。结果表示为平均值↑SE(m2丛面积;MMI的任意单位)lmmunoperoxidase染色。免疫过氧化物酶染色如前所述(22)。简单地说,用低温恒温器切割4米厚的新鲜冷冻切片。使用大鼠抗小鼠单核细胞/巨噬细胞(F4/80)单克隆抗体(Abcam,Cambridge,UK)评估巨噬细胞浸润,然后使用生物素标记的山羊抗大鼠 lgG抗体(Jackson ImmunoResearch Laboratories, West Grove,PA)。使用Vectastain Elite试剂盒(Vector Laboratories, Burlingame, CA)对切片进行亲和素-生物素偶联反应。计数每只动物10个肾小球中f4/80阳性细胞数。每个肾小球和间质组织的平均阳性细胞数(mm2的数量)用于估计。Immunofluorescent染色。免疫荧光染色如前所述(21)。采用兔抗mt抗体(Santa Cruz Biotechnology, Santa Cruz, CA)Alexa Fluor 488驴抗兔IgG(Invitrogen, Carlsbad, CA)检测 MT-1/ 2在肾脏中的表达。为了确定MT-1/2是否定位于近端或远端小管上皮细胞,分别用山羊抗水通道蛋白-1(AQP1)抗体(Santa Cruz Biotechnology)或山羊抗tam - horsfall蛋白(THP)抗体(Santa CruzBiotechnology)反染色,然后用Alexa Fluor 594驴抗山羊lgG (Invitrogen)反染色。对于其他免疫荧光染色,抗IV型胶原(Millipore,Temecula, CA),抗纤维连接蛋白(Sigma-Aldrich, St. Louis, MO)和抗4-羟基烯醛(4-HNE;Abcam)被使用。荧光显微镜(BX51;奥林巴斯,东京,日本)Western blot分析。如前所述进行 Western blotting(15)。简单地说,蛋白质被洗脱,用SDS-PAGE分离,并转移到硝化纤维素膜上。在20 mM Tris·HCl (pH 7)中阻断后。6)150mm NaCl,01% Tween 205%(wt/vol)脱脂牛奶,用抗纤维连接蛋白(Sigma-Aldrich)和抗磷酸化nf-b-p65 (Cell Signaling Technology, Danvers, MA)孵育膜。将膜与anti-actin(Abcam)杂交以监测不同车道的等效负载。所有实验至少重复三次。电子显微镜。电镜下的组织准备如前所述(22)。近端小管上皮细胞在x1,500x4,000显微镜下拍照。肾皮质基因表达的定量分析。治疗12周后,使用RNeasy Mini试剂盒(Qiagen, Valencia, CA)从肾皮质中分离RNA

F107

 

金属硫蛋白缺乏会加重糖尿病肾病(日本,东京)FastStart SYBR Premix Ex Taq ll(日本,大津, Takara Bio)。引物是从塔卡拉生物公司买的。以 GAPDH为不变对照基因,采用比较Ct法对qRT-PCR结果进行评价。线粒体ROS检测。使用MitoTracker Red CM-H 2XRos(分子探针,Eugene,OR)

MitoTracker Green FM(分子探针)检测线粒体ROS。简单地说,将肾切片与10 M MitoTracker Red CM-H2XRosMitoTracker Green FM在室温下孵育1小时。然后去除未结合的染料,使用荧光显微镜(BX51;奥林巴斯,东京,日本)。细胞培养和处理。小鼠近端小管上皮(mProx24)细胞由Takeshi Sugaya博士(CMIC)慷慨提供,并按照先前报道进行培养(21)mProx24细胞在添加55mMd-葡萄糖(低糖)10%胎牛血清,100 U/ml青霉素,100 mg/ml链霉素,2mMI-谷氨酰胺siRNA实验采用MT siRNA(sc-35926;Santa Cruz Biotechnology)和打乱的siRNA(sc-37007;圣克鲁斯生物技术公司)mProx24细胞转染125nM MT siRNA或在Lipofectamine RNAiMAX(Invitrogen)存在下搅乱的siRNAsiRNA转染24小时后,用25 mMd-葡萄糖(高糖)刺激细胞24小时。单个实验至少重复三次,不同批次或不同制备的细胞。mProx24细胞中基因表达的定量分析。使用如上所述的RNeasy Mini试剂盒(Qiagen)从细胞中制备总RNA。如上所述,采用qRT-PCR检测mProx24细胞中Nox4MCP-1TGF-*OPN mRNA表达水平。 ELISA。肾组织和mProx24细胞中的MT-1/2水平通过 ELISA系统(Frontier Science, Ishikari, Japan)根据制造商的协议进行检测。统计分析。所有值均为平均值 SE。采用单因素方差分析和scheff<s:1>检验对组间差异进行统计学分析。AP000.05认为有统计学意义。

结果STZMT X/X小鼠的肾损害比MT<s:2>/X小鼠更大。代谢数据汇总于表1。糖尿病小鼠的UAE明显高于非糖尿病小鼠。此外,与糖尿病MT /X小鼠相比,注射STZ12周,糖尿病MTX/X小鼠的UAE明显增加(12066 669292 76/;P0 005).与非糖尿病小鼠相比,糖尿病小鼠糖化血红蛋白和相对肾重增加,体重降低。糖尿病MT与糖尿病MT X/X小鼠的糖化血红蛋白、相对肾重和体重均无显著差异。 STZMT X/X小鼠中诱导的间质纤维化较MT mt4/ mt4小鼠更为严重。分离肾脏,并使用PAM染色、马松三色染色和IV型胶原和纤维连接蛋白的免疫荧光进行病理分析(1A)。经PAMIV型胶原染色显示,注射STZ后,MT/MT /X/X小鼠肾小球明显肥大,系膜基质明显扩张。然而,PAMIV型胶原蛋白阳性区域的形态计量学分析显示,MT X/XMTMT/C之间没有显著差异(1BC)580.13 vs.218

0.16%;P0 005)(1D)。纤维连接蛋白的免疫荧光染色和Western blotting也显示出相同的趋势(1EF)。此外,胰岛素治疗可以减轻糖尿病MT X/X小鼠的间质纤维化,表明stz诱导的糖尿病小鼠间质纤维化是由高血糖介导的(1GH)。综上所述,这些结果表明MT缺乏加速了stz诱导的糖尿病间质纤维化。与糖尿病MT/X小鼠相比,糖尿病MT X/X小鼠间质巨噬细胞浸润增加。糖尿病小鼠肾小球和间质中巨噬细胞的数量明显高于非糖尿病小鼠(2A)MT X/XMT MT /X小鼠对STZ治疗后的肾小球内巨噬细胞浸润没有差异(2B)。然而,与糖尿病MT相比,糖尿病MTX/X小鼠的间质内巨噬细胞浸润增X小鼠中NF-B的表达增加(4E)。总的来说,这些数据表明MT缺乏加速了糖尿病诱导的巨噬细胞募集和肾脏炎症基因表达。与糖尿病MT X/X小鼠相比,糖尿病MT X/X小鼠肾脏ROS生成增加。为了评估肾脏的氧化应激,对肾脏切片进行4-HNE免疫染色。这表明,ROS主要在糖尿病MT/X/X小鼠的小管上皮细胞中产生,在非糖尿病MT /X/X小鼠的间质中产生较少(5A)。此外,我们使用MitoTracker Red cm -h2 XRosMitoTracker Green FM染色来评估线粒体ROS的产生。与糖尿病MTX/X小鼠相比,糖尿病 MT X/X小鼠的MitoTracker Red cm -h2XRos强度更高(5B)。这些发现表明,MT缺乏增加了糖尿病诱导的肾间质线粒体ROS。糖尿病MT X/X小鼠线粒体形态恶化。为了证实MT对产生线粒体ROS的有益作用,我们使用电子显微镜更详细地检查了肾脏形态。与非糖尿病MT小鼠相比,糖尿病MT小鼠的肾近端小管细胞肿胀的线粒体数量增加,嵴也明显减少,与糖尿病MT小鼠相比,糖尿病MT X/X小鼠的线粒体数量进一步增加(6)。这些结果表明,MT缺乏损害了糖尿病肾脏近端小管上皮细胞的线粒体功能。敲除MT可增加培养的近端小管上皮细胞中ROS和炎症基因的表达水平。小鼠mProx24肾近端小管上皮细胞转染MT siRNA或乱序siRNA作为对照,并进行 qRT-PCRELISA分析。与对照细胞相比,MT敲低细胞中MT mRNA和蛋白的表达明显受到抑制(7AB)MT敲低细胞中高糖诱导的Nox4mRNA表达增加(7C)。为了评估mProx24细胞中的线粒体ROS,我们使用MitoTracker Red cm- h2 XRosMitoTrackerGreen FM进行双重染色。转染MT siRNAmProx24细胞中,MitoTracker Red cm -h2XRos的强度增加(7G)。同样,MT RNAi上调MCP-1TGF-输出、 OPN等炎性基因的表达水平(2)

 

F110

 

金属硫蛋白缺乏会加重糖尿病肾病7,d-f)。这些发现表明,MT的下调会加剧高糖诱导的肾近端小管上皮细胞的氧化应激和炎症。

 

讨论

 

在本研究中,我们证明MT缺乏加速了stz诱导的糖尿病小鼠的蛋白尿和间质纤维化,但不影响血糖水平。糖尿病MT X/X小鼠肾间质巨噬细胞浸润增加,炎症基因MCP-1TGF-;)OPN表达增加。此外,糖尿病 MT X/X小鼠线粒体ROS增加,线粒体断裂。对近端小管上皮细胞的体外研究表明,MT的下调增加了与氧化应激相关的Nox4的表达和炎症基因的表达。我们的研究结果表明,MT在糖尿病肾脏中具有抗氧化和抗炎作用,并独立于血糖水平阻止糖尿病肾病的发展。MT包括一个低分子量、富含半胱氨酸、普遍存在和可诱导的细胞内蛋白家族,它们与重金属(如锌、铜和镉)结合,并参与金属稳态和解毒(1)。哺乳动物MT家族包括四种亚型:MT-1MT-2MT-3MT-4MT-3主要是脑特异性的,在神经元和受刺激的神经胶质细胞中表达(16),而MT-1/2这两种主要亚型在大多数器官中表达。然而,MT在肾脏中的表达尚不清楚。这项研究和我们最近的研究表明,MT-1/2在糖尿病小鼠(3)和大鼠(21)的肾近端小管上皮细胞中被高度诱导。这项研究还表明,MT以前曾被报道为一种有效的抗氧化剂;保护细胞免受氧化损伤(2,5,9,17,18)。因此,我们假设MT可能作为一种抗氧化蛋白在肾脏中被诱导,从而保护肾脏免受糖尿病诱导的ROS和炎症的影响。许多研究已经提出氧化应激在糖尿病肾病发病机制中的重要作用(3,11,29)。我们通过评估线粒体ROS的产生来评估肾脏的氧化应激。

F111

 

金属硫蛋白缺乏加剧糖尿病肾病糖尿病MT/小鼠。电镜下还显示,与糖尿病MT X/X小鼠相比,糖尿病 MT X/X小鼠近端小管上皮细胞线粒体肿胀更为严重。据报道,线粒体形态在包括糖尿病肾病在内的肾脏疾病中发生改变(8,31,32)。由于MT是一种有效的抗氧化剂和适应性蛋白,可以保护细胞和组织免受氧化应激(12),我们推测MT缺乏可能导致糖尿病 MT X/X小鼠线粒体肿胀增加。但MT与线粒体形态的关系尚未见报道,有待进一步研究。我们还进行了siRNA实验,以探索MTNox4基因表达水平的影响,作为ROS生成的启动子,以及对培养的近端小管上皮细胞线粒体ROS的影响。敲除MT可增加Nox4的表达和MitoTracker Red cm-h2XRos的强度,这表明MT可能通过减少近端小管上皮细胞的氧化应激来阻止Nox4衍生ROS的产生。总之,这些结果表明MT缺乏会增加糖尿病引起的肾间质氧化应激。炎症也与糖尿病肾病的发展有关(13,15,19)。本研究发现,糖尿病MT X/X小鼠中巨噬细胞标志物CD14、趋化因子 MCP-1、细胞因子TGF->OPN的表达水平升高。同样,与糖尿病MT /X小鼠相比,糖尿病MT X/X小鼠的间质内巨噬细胞浸润和间质纤维化增加。然而,巨噬细胞在肾小球中的浸润和系膜基质的积累在两种类型的小鼠中相似。此外,体外研究表明,敲除MT可提高培养的近端小管上皮细胞中MCP-1TGF-输出、 OPN等炎症基因的表达水平。这些结果表明,在糖尿病肾病中,MT缺乏涉及间质炎症,而不是肾小球炎症。与糖尿病MT X/X小鼠相比,炎症基因的主要调节因子NF-B在糖尿病MTX/X小鼠中的表达增加。提示MT可能通过抑制NF-B抑制高糖诱导的炎症。我们和其他人(14,27)已经证明MTMT敲除小鼠中镉或顺铂诱导的慢性肾损伤模型中起保护作用,但尚未报道MT敲除小鼠糖尿病肾病的实验模型。虽然我们之前已经证明stz诱导的糖尿病大鼠肾脏中MT表达上调(21),但MT是否能预防糖尿病诱导的氧化应激和炎症,从而预防糖尿病肾病,尚不清楚。足细胞特异性 MT转基因小鼠表明,足细胞中MT的过表达可以改善糖尿病肾病的主要特征(33),这表明保护足细胞可以抑制糖尿病肾病。通过补充锌诱导肾小管MT合成也可以通过对抗氧化应激来预防糖尿病肾病(23,28)。我们目前和以前的研究(21)表明,MT主要在糖尿病肾脏的肾小管而不是足细胞中被诱导。因此,肾近端小管上皮细胞中的MT可能是治疗糖尿病肾病的治疗靶点。总之,我们证明MT缺乏加速了高糖诱导的肾脏化应激和炎症。本研究结果表明,MT作为抗氧化蛋白在保护肾脏免受糖尿病应激中起重要作用。我们的发现提示MT可能是治疗糖尿病肾病的一个新的治疗靶点。


提示x

您已经顶过了!

确认
''
|
请选择举报原因
垃圾广告信息
色情低俗内容
违规有害信息
侵犯隐私、虚假谣传